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AN INTRODUCTION TO THE METHOD OF AVERAGING

The Method of Averaging is a powerful tool for the integration of systems
of ordinary differential equations which have some rapidly oscillating
variables and other slowly oscillating variables. The literature on the
method can be very frustrating to the beginner. The purpose of this report is
to bridge the gap from casual acquaintance to technical reading. Three worked
examples are included.

The first usage of the main idea of the method of averaging is attributed
to van der Pol. The mathematical foundations of the method were established
by Krylov and Bogoliubov (see Krylov and Bogoliubov in the references).
Further refinements have been provided by Bogoliubov and Mitropolsky.

The method is used in the analysis of nonlinear oscillations, which arise
in various specialties. There are several versions of the details of the
method. For samples, see the references of Jordan and Smith, Meirovitch,
Mickens, and Minorsky. My first encounter with the method occured in the
setting of satellite orbits.

Consider the equations of motion for a two-body orbit

D € e 0O O
il
3 O O O O O

.
n

This is easy to integrate numerically. However, if a more realistic model is
required for a real orbit around a real planet, then the zeros are replaced by
other quantities. Even a modest increase in the fidelity of the model leads
to a heavily coupled nonlinear system. Numerical difficulties are significant
since M varies much faster than the other variables. The rapid change of M
forces a small step size on the whole problenm.

We will see that under certain circumstances a clever change of
variables is available which leads to a simpler system with very desirable
properties. The special circumstances are

a. One of the variables changes much more
rapidly than the others.

b. The only dependence of the slowly changing variables
on the fast variable, is periodic.

The most desirable property is that the resulting equations are easier to
integrate, either numerically or analytically. This comes from the fact that
our change of variable will give an average value of the original variables,
effectively subtracting out periodic behavior. After integrating the simpler
equations, the periodic contribution is effectively added back in as part of
the transformation of variables.




To emphasize the idea of the method, suppose that some phenomenon of
interest behaves as in Figure 1.

tx0] %11 = ro.oooo. 10.0001 (w0, wil = [~1.0000. 4.00001

Figure 1

In order to accurately track the variations in this problem, a very small step
size is necessary. Notice the general trend of the function to increase
linearly. It may be possible to find a linear function and a sinusoidal
function whose sum accurately describes the behavior seen in the figure. If
so, we could follow the line (which is very easy to integrate accurately with
large step size, or even analytically) until we reach the period of interest
and then use small steps for evaluation of the sinusoidal contribution.

Sometimes we can find a change of variable which has the same affect by
absorbing the periodic behavior into the change of variable. The change of
variable to be identified by the method of averaging has this kind of
advantage.




AN EXANPLE

The strategy for finding a clever change of variable will be demonstrated
on the system.

]

X € siny
§ = X + € cosy
where € is a small constant.

We seek new varlables £ and y which lead to a simpler system
of differential equations

£ = ¢ M(£)

]

(1)
€+ Q (§) (2)

X
where M(£) and Q (£) are as yet unknown. Notice the absence of x as an
argument of M and Q. This removal of dependence on the rapidly changing

variable is what the method of averaging is designed to do.

We will describe the relationship between X,y and €,y by

X

€ + en (€,x)
x+ed (&)

y

where n and ¢ are as yet unspecified. Notice that since £ is small £ and x
are closely related to x and y.

Differentiation of these equations yields

’.‘=é+8—g—2é+eg—;i
9 = i + € g% é + € g% i
With substitution this becomes
9=€+€Q+€2%%M+c% €+e2%%n

This representation has the flavor of a power series in €. We will compare
it to the Taylor expansion of the original equations. Omitting the details
we present the terms of the series through O(e) when expanded about a point

(§,x).




x=¢gsiny +¢ (y - x) cos %
y=€+eccosy+ (x-€ -¢(y=~p) siny

Comparing the two series and recognizing that y - ¥ and x - £ are each 0O(e},
we see that to first order

= an
sin y =M + £ o (3)
= a¢
cos x +n=Q+E&E 2 (a)
NOTE: This method can be used while keeping any desired order of
accuracy in €. But since we have deleted terms, we are now
working with an approximation to the original problem.

We now have the problem reformulated in terms of two equations in the four
unknown functions M, Q, 7, and ¢. This means we are free to impose two
conditions at our convenience. We use these two conditions to lay the
groundwork for the disappearance of x in our final solution. The conditions
are

n is periodic in y with period 2nm,
¢ is periodic in x with period 2n.

It is hot necessary that the period be 2x, I have simply chosen this
value for illustration. Our next step exploits the two conditions just

introduced. We will integrate with respect to y over one period. Several
integrals will be zero by periodicity of the anti-derivatives.

14 .1[ 4 3
rsinxdx = erx+r£5:—dx (5)

0

n 2n a9
Jzzos xdx + Jzndx = I Qdy + IZH€ Iy dy (6)
0 0 ) X

0

Equation (5) immediately reduces to
0 = 2nM

and forces the choice M = 0. Hence, equation (3) becomes

and we can integrate to solve for 9.

Isin xdx = JE gg dy




~-cosxy = €n + ﬁ (€)

n = - % cosy + k(€)

and we are free to choose k(€). We will make our choice after we substitute
for m and give some attention to equation (6).

Jjn[- % cosy + k(E)]dz.= 20

k () =Q

We now choose k() = 0 so Q1 = 0. This means equation (4) becomes

cosy _ £ Qg
- Bx

cosy - T——

which we can integrate to solve for ¢

Icosxdx - JE%EZ dxy = Ié g% dx

siny - i‘-g! =gp + ClE)

We choose C(€§) = 0 and write
siny _ sinx
g
Pulling everything together we obtain simplified equations (1) and (2)

¢=

€=0
x=€

These are very easily integrated numerically, or indeed analytically. The
transformation back to the original variables ic also easy.

prxee o o Un

This solves the problem to first order. To make our solution more concrete,
let's use it with numbers. Suppose ¢ = 0.01 and initial conditions
x(0) = 0, y(0) = 0 are specified.




The original equations become

H
o

x = .01 siny ;. x(0)

"
o

§ =x + .01 cosy ; y(0)
The transformed equations are

€=0 ; € (0) = 0.1

0

x =€ ; x (0)

where the boundary conditions are determined from

0=£00) -¢ -—(—r“?ém
0=1x(0) +¢ sig%é?) e sinx(g)
£(0)
By inspection x(0) = O satisfies that second equation and the first equation
becomes €
0= €(0) - —ETET
or
£(0) = Ve
= 0.1
The solution is
£ =.1
x=1

which, after integration and transformation becomes
x =.1-.1cos (.1t)

.1t + .1 sin (.1t) - sin (.1t)

y

.1t - .9 sin (.1t)

We can graph this to see the exact solution of our approximation to the
original problem.




-'2 B4P

Figure 2

This estimate to the solution of the original problem may be quite rough. But
we knew it is was only a first order approximation and &€ was not extremely
small. Nevertheless, it is useful as an illustrative problen.

The strategy which has been demonstrated is known as the method of
averaging. It is due to Soviet Electrical Engineers Krylov and Bogoliubov

(see references). The method can be used to any order accuracy and for any
size system of slow and fast variables.




A SECOND EXAMPLE

€ sinzy

Given: i

kK +e (x°+ cosay)

Solve through second order using the method of averaging. The method is
applicable since y changes much more rapidly than x and the dependence of x
on y is purely periodic.

To solve the problem through second order we seek a transformation of the
form

=g + en't [E. x] + €2 9 [E, x] (7)

y=x+e ¢u) [ x] + o2 ¢(z) [g, x] .

The superscripts in parentheses identify distinct functions. They do not
indicate derivatives.

When we complete the transformation we will obtain equations of the form

£ =cuV [E] . 2 @ [E]

=k +eq [€] + e2 g2 [6]

We begin our work toward finding the desired transformation of variables by
differentiating the proposed form of the transformation.

ey (1 2 2)

. : an . 2 o7 2 9y -
X = + € + € +t €
. . (1 ' . 2 |
y=x+e—@——€ +8—L—x+e—L€+e—Lz
9€ ax ax
Next we substitute for the form we expect é and i to have, and write
1 1 (1) (2)
< ) (2) 2 dn 1 an 28m 2 an
X + czM + € 3E M + € 3x k +¢€ o Q + € 2 k
1 ¢} (1) 2)
y=k +€Q + e Qz) ezﬂ—— 1’4»::§L—k+::2—@——Qm+::z k
o€ ax ax ax

with terms 0(e) omitted.




The last two equations are the beginnings of power series in € for x and y
in terms of € and x. Since two power series which converge to the same
value must be equal term by term, these last two equations must match the
corresponding portions of the Taylor series expansions of the original
equations. So expand the original equations about x = €, y = y.

>'<=esin2y (x - €) +

a4 2
x 5*“&5“‘%
y y

?

5 (y - ) + )

x
N

y =k + e (x° + cos’y)

a 2 3
x=S+s:—5§(x +cosy)x=§(x-§)+
y: y‘-‘
a 2 3 3
c—a—(x +cosy)| (y -x) + 0 ()
y yI %

(1)

x = ¢ sin’x + 2¢70" siny cosx + 0(c?)

2

€n

(1)

)‘/ =k +¢ (62 + cos3x) + 2¢ - 3e21>u)coszxslnx + 0(e¥)

From setting the terms of the two power series equal we obtain

(1)

(1) an - 2
M + % k = sin"y (9)
(1)
n“’ + —%— k = 62 + cosax (10)
(1) 1) (2)
(2) (1) 8n (1) 8n an
M + M —a—é + —a—x- + k Bx =
2¢mslnxcosx (11)
(1) (1) {2)
@ (1 n % 8 (1)
Y + A 3 * k7 = 26n (12)

-34)“) coszxsinx

These four equations contain all of the requirements which are to be
satisfied by the transformation of variables. It remalns for us to find

expressions for M(u' M(z). Qu)' n(a)’ nm. n(z). ¢(1). and 4,(2) such

that the four equations are satisfied. Since we have 4 equations but 8
unknowns, we are free to choose 4 values at random. However, it will be to
our advantage to choose cleverly. In particular, it is part of the method




of averaging to require that nm, n(Z), ¢(”, and 4>(2) each be periodic in x. ‘

We will assume period 2m for convenlence. (We could have stated this as part
of the form of the proposed transformation.)

As a preliminary step to solving the system of 4 equations, we will compare
the average value, over one period, of the two sides of each of the equations.
Of course, they must be equal. This is the step which gives the method its
name. We begin with equation (9).

T LI n
1 (1) k an 1 . 2
T M dy + > Bx dy = 5u sin"y dx
0 o )
2n 2n 2n
1oy ., k@ A [L _ sin(2y) }
2n 2n 2n 2 4
0 )
0
(y _ 1
.
Now that we know M!) = % lets take another look at equation (9).
(1)

o °

5 + 3% k = siny

(1 2 1

an - sin"y - 2
ax k
(1) _ - sin (2x)
n e | + f1 (€) (13)

where f1 (€) is the constant of integration with respect to y. Let f1 () = 0.

(Actually, I looked ahead before choosing 0). Now consider equation (10).

{4 {4
(1)
1 (1) 1 _ 1 2 1
ﬁ Q dx + _Z—i ax k dy = —2; € dx + —2'? cOoSs xdx
(o] (o] (o]
Q“) = EZ

10
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.

»
2

Remember that many of the integrals we are encountering can be solved by
inspection and many are zero. For example, in the present case

1)

Q is constant with respect to x so the first integral was easy.

¢(” is periodic (with period 2m) in y so the second integral was
zero.

&2 is constant with respect to x, so the third integral was easy.

cos3x is periodic and from our knowledge of the graph
of cosy, we can conclude the fourth integral is zero.

)

Now that we know Q'*’ let’s take another look at equation (10).

1)
€2+_§Lk=€2+c053x

ax
(1) 3
_ _cosx
3x k
(1) siny (coszx + 2)
$ = + £,(8) (14)
3k
Next we consider equation (11).
2n 2n (1) 2n (1)
1 (2 1 (1) dn 1 (1Y an
2Zn J M&dx v 5o J M a€ d + = J Q 3x dx
0 0 0
n 4§
(2)
k an _1 (1)
+ o B dxy = o 2¢""" sinyxcosy dx
) )
M@ - o

Looking again at equation (11).

+ fZ(E) sinycosy

E2 -cos(2x) - an‘Z) .2 siny (coszx + 2)
2k Ax - 3k

11




n(2)= _§__ Jcos (2x) dx + jsin2 xcosaxdx + —25 I sinzxcosx dxy +

2k? 3k 3k
2f2
< sinycosy dx
- 62 sin(2x) _ 2 sinsx .8 sin3x
2k2 2 3k2 S 31(2 3
Zfz sinzx
Y 5 + f-3 (€) (15)

Finally, we compare average values for equation (12). A lot of trigonometric
identities are used here. Personal preference has significant impact on form
and simplifications. Be aware that verification can be tedious.

114 27

£ 4

(1) (1)

1 2) 1 1) @ 1 (1) BQ

5r| @ ZnJ MY e — I+ 5 rn o
(¢] o] 0

2n 2n
(2)
1 8 _ 1 ¢ )] _ 1 (n 2
—>a J k dx = T IZE'Q dx T J 3¢ cos“ysiny dy
0 0

)
+
IH
E
NI
[<
N
Q.
x
i

€ -sin(2y)
Ea [_——4k ] dx
0

.3 sinx(coszx + 2)
3k
0

+ fz] coszxsinx dy

12




df

@ 1 2 _ _ 1 2 2
Q *t 5 & - >k sin(ycos“y + 2) cos xsiny dx
o
af ("
- 2 coszxsinx dy
2n
o
{4 T
df
@ 1 2 _ _ 1 2 4 _ 2 s 2 2
Q + 5 & - >uk sin xcos x dx Ik sin ycos x dx
0 . 0
2n
1 sinaxcos3x singxcosx 1 . X
=T Tomk 6 ¥ 8 T 1 Sinxcosx * g
0
3 2n
_ 1 sin"ycosy _ sinyxcosy + X
nk 4 8 8
0
=- 1 _ 1
‘ 16k 4k
= - 2
16k

Now choose f = :§§ to make 9(2) = 0.
2 8k

Note: There is a trade-off here. I could have chosen f2= 0

long ago and Q“n would have been a constant (still easy to integrate

later) and simplified ¢(“ in the transformation. Personal preference was

* my only motivation.

Now we take another look at equation (12).

13




-5 2 1

2)
Tac * € =K [sinx (-2cosx siny) + cosy (cos’x +2)) + k i

dx

2

_ € _ siny(cos x + 2) _ 5§ 2. .
= = sin(2yx) - 3 3K S| cos xsiny
2)
g¢ B sin(2y) - —15 cos4xsin2x - —25 coszxsinzx +
x 2k K k
2 2 2
égg coszxsinx + 3 + 252 sinaxcosx - £ 3 cos3z - 262 cosy
16k 3k 3k 3k
2) £ 1 cos xsin’ 1 sin(4y)
¢ = —scoslan) - — | - [__rx__x]
4k k
_ 2 ( sinsxcosx _ _sinxcosxy _x_} _ 15¢ cos’x R
kz 4 8 8 8kz 3 16k2
2
—5—5 siny [coszx + 2] + f4 (§)
3k
3 3
=1 3 _ cos ysin'y s
= —I—(E [—4— COS(ZX) 6 + 64 S1n (4x)
5€ 3 £ 2 2
- g cosx - 3 siny (cos™y + 2) (16)

where we have chosen f4(€) = 0. We have not seen any opportunity for a
clever choice of f3. Let f3(€) = 0.

The transformed differential equations are

¢ = €
£=3
x=k+e€

14




This can be solved as

m
]
N ™

t + Eo

2
N >4
A= k + ¢ (-it + €0]

eztz 2
x:k-’-c[ i +et€°+€o]
3,3 2,2
et et 2
X =Kkt + —5 2 Eo * Ctgo X

The transformation back to the original variables is obtained by
substituting equations (13) - (16) into equations (7) and (8).

x =€ - esin(2y) + &2 €2sin(2x) _ Zsinsx . Zsin?x _ 5§sin2x
dk aK? 15k> 3Kk 8k>
_ 1 2 _ 5S¢ 2 1| & _
y=x+ e[—§E siny (cos"y + 2) —§E]+ € —;5[—1— cos(2x)
3 3 2
cos xsin 'y 5 . _ _S¢ 3, _ & 2
3 *+ &5 sin (4y) g cos'x - 3 siny (cos™ x + 2)

This concludes our second example.

Note that different choices fo:
answers which may appear to be different, yet still be correct.

15

the constants of integration lead to




THIRD EXAMPLE

The next example has one fast and two slow variables.

Given: k

€ (x2 + sinzy)

2
€ cos'y

» .
]

y 2 .
=X X + € X sln
y 1 2 1 y

Solve through 1St order using the method of averaging.

We seek a
transformation of the form

x, =& +en (€. €, x) (17)
x, =§ *en, (€1, €,.%) (18)
y=x+¢ep (§.€,x) (19)

where we require n . n, and ¢ to be periodic in y. Once nl, nz,

and ¢ are known, we can differentiate and rearrange to get transformed ‘
differential equations of the form
£ =

L= €M (€1’€2)

)
]

, = €M (€, €2)

X=g g ren(g.g)
where, as indicated in the notation, Mx' Mz’ and Q do not depend on x.

If we differentiate the proposed transformation, we see that in
terms of the new variables, the differential equations are

. . an l . an l . anl .
X = s1 tE 8&1 gx te a§2 §z te ox x
P an on, an

. 2 . 2
2 E2+£8§1 E"sag g*s—a—i_—x

- o . . B .

16




And if we further substitute, using the form which we desire éx’ éz' and

i to have, we obtain the first order approximation

. an, 2
x, =€ M1 + € 5% El 52 + 0 (€7)
an
x =eM +& —2> € £ +0()

2 2 ax 1 72

9=slg+eﬂ*°—¢'—§x §§ v0

These are power series representations in € of the differential equations.
Another set of power series representations in € can be obtained by
expanding the original equations in Taylor series. After this has been
done, we can set the power series representations equal and all of the dot
terms will be gone. Further, since both series are power series and they
converge to the same function, they are equal term by term (from which we
will extract a system of equations to solve). For the original equations,
the Taylor series is

x =¢ |x_+ sin’y I ve 2 x_ + sin’y
1 2 X = ox 2 x=€ (x -€) +
1 ™1 1 1 1
*= & x,= &
y=Xx y=x

a 2 a . 2 2
N [x2 + sin y]l (x2 - Ez) + € 3y [x2 + sin y]|x1= Eiy -x) +0 (%)

2 X" €1
X~ gz X= E2
Y=x Y=x
but, (x1 - El), (x2 - &2), and (y - x) are all O(e), which means that through

first order

* 2
x1 =g [€2+ sinx]

Similarly,
X =€ coszy +0 (82)
x =§
1 1
X, = é‘.z
y=x

17




9 =X X + € x° siny +
12|, £ 1 x =€
1 1 1 1
¥, T €2 X, T E2
y=2x y =
8 {(x x_) (x, -€) + (x x_) + 0(e?)
ax 12 x = El 1 1 8 172 'x el
X, = €2 X, T Ez
y=2 y=x

2 .
=§ §,+eg siny+ef, n +e

When we match corresponding terms of the power series we get

81)1
M1 * ax §1€2

ga + sinzx

an

2 2
Mz * ax 5152 = cosx

89 2
Q + ox E,Ez €1 siny + €, n o+ El n, (20)

When we compare the average values over one period for each equation, we
obtain

- 1

M, = Ez 3
1
M,=3

which we can substitute back to get

o

1 1 _ 2
E2 3t 5 €162 = &, +siny

18




Let f1 = 0. Then

- sin (2y)
1 4 516 2
Next,
an
1 2 - 2
2 ' 5 £,§, = cosx
M __1 [cos -
ax €8, 2
= 1 .4 1 - X
n, = X [2 + - sin(2x) 5+ f, [51' 52]
Let f2 =0,
sin(2y)
n (22)
2 4 E162
Now we compare average values for equation (20) and obtain
Q=0
Substituting into equatién (20).
d _ @2 -sin (2x) sin(2y)
s 5% TE s v &, et & Tee-
1°2 1°2
El sin (2x) sin (2y)
" E Sio- v T
2 4 E1€2 4 Exgz
£, £,-€
$ = g cosx ¢ 5 | cos(2x) (23)
2 8 gl gz

19




Now, our new differential equations are

(oog g
: €
&= =2
x =§&¢E

whose solutions are developed by

£
§2 =5t Ez

o
€=L2-t +£€ +_£_.
1 2 zo 2
cztz €
€ = 4 v et g ¢ -t *E
o 0
eztz € €
‘[4 *“520*—2—“510][7“520]

[x]

3 4 2 2 3
_ e t 3e t
x__8__4_.+[ € +.__]T+

2
2 € € t

[e E2 M E2 * 51 )_2_ * El Ez t +1x,
0 0 o o “o

which can be transformed back to the original variables by substituting
equations (21) - (23) into equations (17) - (19). This concludes the example.

€ sin (2y)
x=€ - T
1 1 4 6152
£ sin (2y)
X = * —_— O
2 EE 4 6152
£, £ -§&
y =x +e¢ 3 cosy + — cos(2x)
2 8E &
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A TRANSITION TO THE LITERATURE

Historically, primes were used to indicate the transformed variables.

That is, x’ = €, y’ = x. Because of this, it is not unusual to read of
“primed variables"” although the primes are almost never actually written. If
the method is applied twice within a problem then "doubly primed" variables
are obtained. (This would be done to remove the second fastest periodic from
a set of equations.)

The generalized method of averaging addresses a system of slow variables

i =€ f‘l)
1 1

(x, y) + e f:2) (x, y) + ....

and fast variables

y (1)
=W X) + eu
ya a (—) a

(5. y) + e u;Z) (5, X) + .

The strategy is to seek a transformation of the form

2
g +en (g x) + e

x
[}

(€, 2) + .

€ 2 + &2 $'?

_ (1)
Yo T Xy T E ¢ a

N €, 2) + ...

where el = x by notational convention.

1
The corresponding differential equations will have the form

é e M(1) )

i 1

€ + M (€ + ...

GG N ()

™.
[}

(1
w, () +eql

These are solved using the strategy demonstrated in the preceding examples.
This concludes my introduction to the method of averaging. I have given a
sufficient background for an intelligent reading of TN76-1 (Hoots & Major)
which contains detalils.

For current applicatlions in astrodynamics, see the references under Liu.

References to the Method of Averaging or the KBM method should now be more
readable.
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